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ABSTRACT

We generalize a magnetogram-matching Biot-Savart law (BSL) from planar to spherical geometry. For a given
coronal current density J , this law determines the corresponding magnetic field B̃ under the condition that its
radial component vanishes at the surface. The superposition of B̃ with a potential magnetic field defined by
the given surface radial field, Br, provides the entire magnetic configuration, in which Br remains unchanged
by the currents. Using this approach, we (1) upgrade our regularized BSLs for constructing coronal magnetic
flux ropes (MFRs) and (2) propose a new method for decomposing a measured photospheric magnetic field
as B = Bpot + BT + BS̃ , where the potential, Bpot, toroidal, BT , and tangential poloidal, BS̃ , fields are
determined by Br, Jr, and the surface divergence of B − Bpot, respectively, all derived from magnetic data.
Our BT is identical to the one in the alternative decomposition by Schuck et al. (2022), while Bpot and BS̃ are
very different from their poloidal fields BP< and BP>, which are potential and refer to different surface sides.
In contrast, our BS̃ is generally nonpotential and, as Bpot and BT , refers to the same upper side of the surface,
rendering our decomposition more complete and consistent. We demonstrate that it allows one to identify the
footprints and projected surface-location of MFRs, as well as the direction and connectivity of their currents,
especially for weak or complex configurations, which is very important for modeling and analyzing observed
pre-eruptive configurations and their eruptions.

Keywords: Sun: coronal mass ejections (CMEs)—Sun: flares—Sun: magnetic fields

1. INTRODUCTION

Magnetic fields and electric currents play a key role in
many dynamic processes in the solar atmosphere (e.g., Priest
2014). Among them, solar eruptions are the most energetic
and probably most spectacular phenomena, often producing
coronal mass ejections (CMEs; e.g., Webb & Howard 2012)
that propagate far beyond the corona. These gigantic ejec-
tions of magnetized plasma can cause dangerous streams of
accelerated particles penetrating interplanetary space (e.g.,
Reames 2013) and major geomagnetic storms as they arrive
at Earth and interact with the terrestrial magnetosphere (e.g.,
Gosling et al. 1990). Therefore, the capability of accurately
describing and modeling solar eruptions is of great impor-
tance from both theoretical and practical points of view. Spe-
cific attention has been paid to eruptions originating in active
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regions (ARs), as those produce the majority of CMEs (Liu
et al. 2017), as well as the fastest and, typically, the most
geoeffective ones (e.g., Gopalswamy 2018).

The energy required to power an eruption is gradually ac-
cumulated in the corona and stored in current-carrying, ap-
proximately force-free magnetic fields. These pre-eruptive
configurations (PECs) are thought to be magnetic flux ropes
(MFRs), sheared magnetic arcades, or some hybrid between
the two (e.g., Patsourakos et al. 2020). The evolution of an
eruption typically occurs in three consecutive phases, con-
sisting of a slow initiation phase, an impulsive main phase,
and a final propagation phase (e.g., Zhang & Dere 2006).

For most of the time, this evolution proceeds slowly
enough to be adequately modeled via numerical magnetohy-
drodynamic (MHD) simulations. To initialize MHD simula-
tions of solar eruptions, constructing PECs and setting ap-
propriate boundary conditions are required. For the mod-
eling of observed events, both of these procedures have to
be constrained by observational data, of which the photo-
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spheric magnetic data undoubtedly play the central role (e.g.,
Török et al. 2018). Modeling a realistic PEC that is close
to a force-free equilibrium (due to the strong magnetic fields
present in ARs) and constrained by observed magnetic data
is itself a nontrivial problem. Many methods have been
developed for constructing PECs with different degrees of
realism and complexity, for both idealized and real-event
cases. These include, in particular, (1) evolutionary methods
based on boundary-driving, either magnetofrictional (Che-
ung & DeRosa 2012; Price et al. 2020) or via slow MHD
flows (Amari et al. 2000; Lionello et al. 2002; Linker et al.
2003; Bisi et al. 2010; Zuccarello et al. 2012; Mikić et al.
2013), (2) nonlinear force-free field (NLFFF) extrapolations
(e.g., Schrijver et al. 2008; Canou & Amari 2010; Jiang et al.
2018), (3) MFR insertion method (van Ballegooijen 2004;
Su et al. 2011; Savcheva et al. 2012), and (4) analytic MFR-
embedding models (Lugaz et al. 2011; Manchester et al.
2014; Titov et al. 2014, 2018; Török et al. 2018; Downs et al.
2021; Kang et al. 2023; Sokolov & Gombosi 2023).

Due to the inherent non-linearity of the problem, multiple
iterations or evolutionary steps may be required to produce a
PEC that satisfactorily matches the magnetic data, irrespec-
tive of the used method. During such iterations, it is conve-
nient to treat the current-carrying and potential parts of the
modeled PEC separately, at least as far as their contributions
to the normal (or radial) field component, Br, at the boundary
are concerned. The main purpose of this article is to provide
a general approach that allows one to perform such a separate
treatment, by excluding the contribution of coronal currents
to the photospheric distribution of Br, so that the latter is as-
sociated only with the potential magnetic field in the corona.

This representation of a coronal magnetic field is useful,
at least, for solving the following two problems. The first is
the modeling of PECs via the superposition of an MFR and a
given potential magnetic field, where the MFR is constructed
using our previously developed regularized Biot-Savart laws
(RBSLs; see Titov et al. 2018; Titov et al. 2021). Now the po-
tential field must be calculated only once, which can benefit
PEC modeling methods that involve trial and error or itera-
tive optimization. The decomposition can also help guide the
placement of the currents in the PEC model (e.g. the MFR
geometry). Using our RBSL method for modeling observed
PECs (Titov et al. 2018) as an example, we demonstrate that
this approach greatly advances such procedures.

The second problem is the decomposition of a given pho-
tospheric magnetic field B into the following three parts: (1)
a potential field Bpot derived from a given Br and generated
by subphotospheric currents that do not reach the solar sur-
face, (2) a toroidal field BT derived from a given Jr, and
(3) a poloidal field BS̃ ≡ B −Bpot −BT . The fields BT

and BS̃ are purely tangential and are generated by all coronal

currents, subphotospheric closure currents, and correspond-
ing auxiliary fictitious sources described below.

These two problems are closely related, as the solution of
the second problem actually helps to solve the first one. This
is because it allows one to identify the location of MFRs in
projection to the boundary, particularly their footprints, as
well as the presence and direction of unneutralized currents
in MFRs by using only vector magnetic data, i.e., in advance
of modeling PECs. These capabilities can significantly en-
hance the power and precision of the RBSL method.

The idea of decomposing a surface magnetic field into in-
ternal and external sources originated with Gauss, but re-
cently was applied to the solar case by Schuck et al. (2022)
in terms of spherical harmonics for a spherical boundary.
Welsch (2022) reformulated this approach in terms of Fourier
transforms for a planar boundary. The innovative approach of
these papers can provide important insights into the nature of
coronal currents and inspired us to look into vector decom-
position more closely. The toroidal field BT that arises in
our decomposition is identical to theirs. However, their other
two parts, the poloidal magnetic fields BP< and BP>, are
very different compared to ours. These two fields are purely
potential in their approach, which is in contrast to our con-
clusion that the photospheric field B −BT , in general, must
be nonpotential. The latter is due to the presence of a nonva-
nishing toroidal current density on the surface.

This discrepancy can be resolved by noticing that BP< and
BP>, by construction, are defined at the upper and lower
sides of the surface, respectively, which strictly speaking
makes this field representation inconsistent with the equilib-
rium conditions at this radius. Indeed, the magnetic field in
this region must have a strong radial gradient to accommo-
date a sharp drop in gas pressure with radius on the hydro-
static length scale ∼ 100 km, which in an idealized approach
implies the presence of a magnetic discontinuity across the
surface. In other words, the assignment of BP< and BP> to
the same surface is questionable for a general field and could
explain the loss of nonpotentiality in the field B−BT in their
decomposition. This difference is central for discussions in-
volving the source(s) of the photospheric Br and applications
involving energy estimates and PEC modeling. However, it is
not clear how important this issue is when a method is prac-
tically applied to the detection of MFR locations from vector
data.

In contrast, all three parts of the field in our method of de-
composition of vector magnetograms refer to the same side
of the same surface, rendering it more complete and consis-
tent. Its theoretical foundation is based on our generalization
of the Biot-Savart law described in Section 2. The method of
decomposition and its application to modeled and observed
PECs are presented in Section 3. We demonstrate that this
method indeed allows one to identify the MFR footprints as
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well as the MFR shape in projection to the photospheric sur-
face, which provides important constraints for comprehen-
sive modeling of PECs. The results obtained are summarized
in Section 4. Appendix A thoroughly describes the derivation
of the magnetic field of auxiliary fictitious magnetic sources
and their physical meaning.

2. MAGNETOGRAM-MATCHING BIOT-SAVART LAW

2.1. Preface

In MHD, the magnetic field and electric current are linearly
coupled via Ampere’s law, whose differential form states that
the current density is the curl of the magnetic field. For our
purpose, however, we need to use the inverted version of this
relationship, provided by Biot-Savart’s law (BSL). By apply-
ing the latter to a given volumetric distribution of the current
density, one can determine the corresponding magnetic field.
However, the normal component of this field will generally
not vanish at the boundary. However, Isenberg & Forbes
(2007) noticed that, for the case of a coronal line current,
one can reduce this component to zero by adding a subpho-
tospheric current that closes the current path. We refer to
this subphotospheric current as “closure current” henceforth.
They achieved this by approximating the boundary surface
with a plane and using the mirror image of the coronal cur-
rent path about this plane as the closure current path. The
same approach in planar geometry, but for distributed coro-
nal currents, was also used earlier by Wheatland (2004) in
his numerical method for NLFFF extrapolations of the sur-
face magnetic field to the corona. Unfortunately, this method
does not work for a spherical boundary. Our article provides
the corresponding generalization for spherical geometry for
both line and distributed currents, the closure-current paths of
which can be of an arbitrary shape. These extensions should
be particularly useful for modeling PECs that contain elon-
gated filament channels.

Note that mirroring a coronal current about the surface
boundary is not just a mathematical “trick”, but rather a nat-
ural way to incorporate the consequences of photospheric
MHD line-tying conditions directly into BSL. These con-
ditions take into account the effect of density stratification
on ideal MHD perturbations of magnetic fields (e.g., Hood
1986). With respect to such perturbations caused, e.g., by
solar eruptions, they strongly idealize the inertia of the dense
plasma at and below the photosphere by treating this region
of the Sun as an ideal rigid conductor.

Following this idealized approach, we henceforth assume
that the dense solar interior is separated from the tenuous
corona by the photospheric surface whose elements cannot
be set in motion by coronal MHD flows. Due to the frozen-
in-law condition, these flows can then change only the tan-
gential, but not the radial, component of the magnetic field
at the photospheric boundary. With respect to the aforemen-

tioned coupling of the magnetic field and current, this means
that Br cannot be affected by a change of coronal currents.

Motivated by these considerations, we derive here a new
form of the BSL that allows one, for a given line or distributed
closed current, to calculate the coronal magnetic field with a
vanishing Br at the spherical boundary. Thus, if one super-
imposes such a modified BSL field with the potential mag-
netic field determined from, say, an observed boundary dis-
tribution of Br, the total current-carrying magnetic field will
match this distribution. Therefore, we now use the term
magnetogram-matching BSL (MBSL).

We achieve this by including into the classical BSL el-
ementary potential fields produced by auxiliary fictitious
sources, all located within the solar interior. The sources are
represented by magnetized shells of triangular shape whose
one vertex is situated at the center of the Sun and the other
two below the boundary, at an infinitesimal distance from
each other. By construction, such a shell produces a po-
tential field whose Br at the boundary compensates that of
a BSL current element, regardless of where this element is
located—below or above the boundary. We exploit here es-
sentially the same approach as the one used in the method of
images for solving magnetostatic and electrostatic problems
(e.g., Jackson 1962).

Applying our MBSL approach only to the subphotospheric
currents that provide a closure to coronal current loops,
which are either a single-line current or a continuum of cur-
rent tubes with infinitesimal cross sections, we show that
their total field, both in the coronal volume and at the surface,
depends only on the foot points of these loops. Moreover,
it is actually a part of the so-called toroidal magnetic field,
which has a vanishing Br and, summed with the poloidal
field, forms the entire coronal configuration (see Schuck et al.
2022 and Yi et al. 2022 and references therein). We substan-
tiate this nontrivial result by means of two complementary
proofs: One is purely mathematical, while the other relies on
the physical properties of the fictitious sources that produce
the compensating magnetic field for the subphotospheric cur-
rent elements.

In contrast, the application of MBSL to coronal currents
provides a magnetic field whose Br generally does not vanish
in the volume and depends on the shapes of the current paths.
By adding it to the toroidal field and the potential field de-
rived from the photospheric Br, one obtains the entire coro-
nal configuration. The current distribution associated with
the toroidal field here provides the required closure for the
coronal current loops in this configuration. It matches the
radial component of the current density, Jr, at the boundary
without affecting Br there.

In contrast to Schuck et al. (2022), whose field BP> has
a nonvanishing Br at the surface, our decomposition method
allows the photospheric field associated with the coronal cur-
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rents to be purely tangential to the boundary. Such a field,
taken alone, would be produced on the surface in response to
the induction of the coronal currents if the solar globe were
an ideal rigid conductor. The photospheric distribution of Br

can then be associated only with currents that circulate solely
in the interior. In light of the above discussion, our type of
decomposition, compared to the Gaussian one, appears to be
more appropriate for analyzing transitions from pre-eruptive
to post-eruptive magnetic configurations.

Thus, the application of MBSL to both the interior and the
corona of the Sun allows one to separate the current-carrying
part of the configuration such as if its coronal BSL field were
completely shielded at the boundary by surface currents. The
latter could even be determined from the resulting tangential
field component by assuming that this component becomes
zero when crossing the solar surface towards the interior.
Using these surface currents instead of our fictitious sources
would provide another way to derive the MBSL. However, as
already mentioned, they are not a purely abstract construct,
as in our field decomposition. Rather, a part of these sur-
face currents have to develop during eruptions, because of
the line-tying effect, in response to relatively fast variations
of volumetric coronal currents. This is consistent with both
existing MHD models and observations, which show much
larger changes in the photospheric transverse field Bt than in
Br during eruptions (e.g., Wang 1992; Wang et al. 1994; Sun
et al. 2017).

2.2. Closed Line Current

Consider a line current of strength I flowing along a closed
path C∪C∗, where C and C∗ are its parts above and below, re-
spectively, the solar surface of radius R⊙ (Figure 1). Let this
path be represented by the radius vector R(l) and parameter-
ized by the arc length l measured from one of the foot points,
so that R′ = dR/dl is a unit vector tangential to the path.
Then, according to the BSL, the infinitesimal contribution of
a path element of length dl to the magnetic field BI produced
by I at a given observation point x is described by[

µI

4πR⊙

]
dBI =− (x−R)×R′

|x−R|3
dl

=
r × dr

r3
=

r̂ × dr

r2
, (1)

r=x−R , r̂ = r/r , (2)

where the expression in the brackets on the left hand side of
Eq. (1) represents the unit in which BI is measured. Similar
expressions in the brackets will be used further for designat-
ing the units of other values in our paper. Also, we assume
hereafter that l and the lengths of all vectors are normalized
to R⊙ and µ is the magnetic permeability in vacuum.

The result of integration of dBI along the path is a po-
tential magnetic field that for r > a/R⊙ approximately de-

Photosphere

O
Figure 1. The radius-vector R(l) with the starting point at the cen-
ter of the Sun O defines a line current path that consists of coronal
and subphotospheric parts, C and C∗, respectively. The integration
of the elementary Biot-Savart field (see Eq. (1)) along this path pro-
vides the potential magnetic field produced by the current circuit at
a given point x.

scribes the field of a magnetic flux rope (MFR) with a cir-
cular cross-section of radius a (Titov et al. 2018). This field
generally has a nonvanishing radial component at the pho-
tospheric boundary. If the characteristic size of the configu-
ration is smaller than R⊙, then the value of this component
can be significantly reduced by defining the subphotospheric
path C∗ as a mirror image of C about the plane that locally
approximates the boundary surface (Titov et al. 2021). How-
ever, the deviation of the radial component from zero at the
spherical boundary is growing with size, and so it is desir-
able to make it disappear. Otherwise, the field superposed
of BI and the ambient potential field would not match the
corresponding magnetogram.

2.2.1. The Inversion and Closure of the Path C

In spherical geometry, the analog of mirroring a point R
about the boundary is the inversion transformation (see, e.g,
Coxeter 1969) given by

R∗ = R/R2 , (3)

where R∗ is the image of R. Using this formula and the
fact that the direction of the current in the image should be
switched to the opposite, one can obtain the following rela-
tionship between the radial components of Eq. (1) and its
transformed expression dB∗

I at the boundary:

R̂ · dB∗
I |x=R̂ = −R∗ R̂ · dBI |x=R̂ , (4)
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where R∗ ≡ |R∗| and R̂ is the radius-vector of a given point
at the photospheric boundary such that |R̂| = 1, as it is nor-
malized to R⊙. Eq. (4) makes it clear that these components
cancel each other only in the limit of R → 1. Thus, the
trick with mirroring the path C about the boundary works for
spherical geometry only approximately, even if the mirroring
is made via the inversion.

In principle, the problem under consideration can be solved
with better accuracy by suitably modifying the observed
magnetogram as a boundary condition for the calculated po-
tential field, so that the sum of this field with BI would match
the original magnetogram (Titov et al. 2018). However, the
exact shape of the modeled MFR is a priori unknown and
therefore finding a sufficiently accurate solution may require
multiple, numerically expansive iterations. In the following,
we propose an alternative method for solving this problem
exactly, which is based on a new form of the BSL, all el-
ementary magnetic fields of which are strictly tangential to
the spherical boundary.

2.2.2. Nonpotentiality of the Elementary BSL Field

Before describing our new method, note first that the ele-
mentary fields dBI given by Eq. (1) are not potential. In-
deed, the curl of this equation yields the following result:

∇x × dBI =
dr

r3
− 3

(r · dr)
r5

r = (dr·∇r)
r

r3
, (5)

which shows that, by necessity of the charge conserva-
tion, each individual infinitesimal current element is formally
closed via non-vanishing volumetric currents. The latter are
as imaginary as an isolated current element and distributed
in space as a potential field of the dipole dr = −dR. Since
Eq. (5) is the total differential of the vector r/r3, its inte-
gration over the entire closed path yields a vanishing current
density in the volume. This is a result of the mutual cancella-
tion of the current dipoles having a “head-to-tail” distribution
along the path. Due to this cancelation, the corresponding in-
tegration of dBI over the same closed path provides a purely
potential field BI outside. In contrast, the field obtained by
integration of dBI over a part of this path is never potential.

This fact is valid, of course, for distributed current sys-
tems as well, since they can be represented as a continuum
of current tubes with infinitesimally thin cross sections, the
BSLcontributions of which to the total magnetic field are lin-
early superimposed. Therefore, one should pay attention
to the connectivity of such tubes with respect to the photo-
spheric boundary in order to figure out whether their contri-
butions in the region of interest are curl-free or not.

2.2.3. Compensating Potential Magnetic Fields

It turns out that, for every elementary field dBI , there ex-
ists a corresponding potential magnetic field whose sources

are located at |x| ≤ 1 and whose radial component at the
boundary equals −R̂ · dBI |x=R̂. We call this potential field
the compensating and denote it as dBC∗ or dBC depending
on whether the corresponding current element belongs to the
path C∗ or C, respectively. As described at length in Ap-
pendix A, these fields have the following expressions:[

µI

4πR⊙

]
dBC∗ = − r̂ × dr

r2
+

(r̂ · dr) r̂ × x̂

r2 (r̂ · x̂+ 1)

+

(
1

r
+

1

|x|

)
[(r̂ + x̂)× (r̂ × dr)]× x̂

r (r̂ · x̂+ 1)
2 , (6)

[
µI

4πR⊙

]
dBC = − r̂∗ × dr

Rr2∗
+

(r̂∗ · dr) r̂∗ × x̂

R r2∗ (r̂∗ · x̂+ 1)

+

(
1

r∗
+

1

|x|

)
[(r̂∗ + x̂)× (r̂∗ × dr)]× x̂

R r∗ (r̂∗ · x̂+ 1)
2 , (7)

where

r∗=x−R∗ , r̂∗ = r∗/r∗ , (8)

x̂=x/|x| . (9)

Note that only the first terms of Eqs. (6) and (7) have non-
vanishing radial components, because their other terms have
forms of the vector product with x̂. Taking then the scalar
product of x̂ with Eq. (6) and using Eq. (1), one immediately
obtains that

x̂ · dBC∗ = −x̂ · dBI . (10)

This means that dBC∗ fully compensates the radial compo-
nent of dBI generated by a subphotospheric current element
not only at the boundary but also everywhere in the coronal
volume.

Similarly, the scalar product of R̂ = x̂ and the first term
of Eq. (7), after restricting it with the help of Eq. (3) for the
boundary surface, yields

R̂ · dBC
∣∣∣
x=R̂

= −R̂ · dBI

∣∣∣
x=R̂

. (11)

This means that dBC fully compensates the photospheric ra-
dial component of dBI generated by a coronal current ele-
ment, as required.

The compensating magnetic field dBC∗ admits a simple
physical interpretation derived in Appendix A.1. This im-
plies that this field is generated by infinitesimal magnetized
triangles spanned on vectors R and their head displacements
dR = −dr along the path C∗ (see Figure 1). Every such
triangle has a magnetic moment that is uniformly distributed
with a surface density m̂ over its area and perpendicular to its
plane to form an elementary magnetized, or magnetic, shell
(see textbooks, e.g., Stratton 1941) .
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Figure 2. (a) The construction of the compensating potential magnetic field for each of the two line-current paths, one of which, C∗ (magenta),
is situated below the photospheric boundary (grey grid) and the other, C (red), above it. For the path C∗ (C), this field is generated by a magnetic
shell whose magnetic moment m̂ (magenta) (m (blue)) is distributed over and perpendicularly to a ruled surface S∗ (magenta) (S∗∗ (cyan)).
This ruled surface is swept out by the radius vector R (R∗) as its head slides along the path C∗ (magenta) (the curve C∗∗ (blue)) from the
foot point R2 to R1 (vice versa). The curve C∗∗ is the image of the path C produced by the inversion mapping (see Eq. (3)). (b) Due to a
uniform distribution of m̂ in S∗, the superposition of the corresponding elementary surface currents results in the line current flowing along the
edge of S∗ (solid green and dashed lines). As this edge line current and the original current in the entire path C ∪ C∗ have the same value and
circulation, they cancel each other on the path C∗. The remaining edge current at the straight edges of S∗ generates the toroidal magnetic field
BIC∗ given by Eq. (12). (c) Due to a nonuniform, proportional to R−1

∗ , distribution of m in S∗∗, the corresponding surface current density
does not vanish in S∗∗ to maintain the appropriate variation of the edge line current along the curve C∗∗. The variation of |m| and associated
edge currents in three infinitesimal triangles of S∗∗ is represented by varying hues of cyan and blue, respectively.

The total compensating field for the path C∗ is therefore
produced by a magnetic shell that is assembled from all such
magnetized triangles that abut the path C∗. In other words,
the assembled magnetic shell is a uniformly and orthonor-
mally magnetized ruled surface S∗ whose directrix is the path
C∗. This surface is swept out by the radius vector R as its
head moves along C∗ from the foot point R2 to R1. The
result is a curvilinear triangle S∗ that has two straight sides
and one curved side (see Figure 2(a)). Due to a constant value
of |m̂|, the corresponding elementary surface currents mutu-
ally cancel each other throughout S∗, except for the edges of
S∗, where they superpose into a non-vanishing line current
(Stratton 1941).

The compensating magnetic field dBC has more sophisti-
cated underlying physics, which Appendix A.2 describes in
detail. This field is also generated by a magnetic shell that is
positioned, however, on a different ruled surface S∗∗. The di-
rectrix of S∗∗ is a curve C∗∗ obtained from C with the help of
the inversion mapping whose point-wise definition is given
by Eq. (3). As in the case of S∗, the magnetic moment sur-
face density field m is orthogonal to S∗∗. However, its mod-
ulus |m| is constant only along the dimension of S∗∗ that
is parallel to the vectors R∗. Along its second, transversal
to R∗, dimension, |m| varies proportionally to R−1

∗ , which
leads to the presence of a nonvanishing surface current den-
sity in S∗∗.

The described physical meaning of the compensating mag-
netic fields will help us thoroughly understand the properties
of the field produced by a coronal line current under the con-
dition that its radial component vanishes at the photospheric
boundary.

2.2.4. Toroidal Magnetic Field and Flux Function

It is interesting that the numerical integration of the field

dBIC∗ ≡ dBI + dBC∗ (12)

demonstrates that the integrated field BIC∗ practically does
not depend on the shape of the path C∗! This surprising result
motivated us to search for its mathematical proof, which was
established by discovering that Eq. (12) considered at fixed
x as a function of r is actually represented by the following
total differential:

dBIC∗ =− (dr · ∇r)Θ(x, r) , (13)

Θ(x, r)=

(
1

r
+

1

|x|

)
r̂ × x̂

r̂ · x̂+ 1
. (14)

In other words, Θ(x, r) is an indefinite vector-valued inte-
gral of the vector field defined by Eq. (2) where the variable
R represents all possible subphotospheric paths C∗ and x is
a fixed point given such that |x| ≥ 1. Thus, the integration
of dBIC∗ along any of these paths yields the corresponding
definite integral

BIC∗ =Θ(x, r)
∣∣r=x−R2

r=x−R1
, (15)

where R1 and R2 are the second (first) and first (second)
foot points, respectively, of the path C∗ (C). In accordance
with our numerical examples, the integrated field BIC∗ , in
fact, depends on the foot points of the path C∗, but not on its
shape.

This non-trivial result can easily be understood if one turns
to the physics behind the compensating magnetic field for the
path C∗. As shown in Figure 2(a) and described in Section
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2.2.3, this field is generated by a uniformly magnetized shell
S∗ whose surface currents superpose into a line current cir-
culating along the sides of S∗. Appendix A.1 shows that the
value and direction of circulation of this current are the same
as for the original current flowing along the path C ∪ C∗. It
is obvious then that these currents cancel each other on the
path C∗ (see Figure 2(b)). Thus, the field BIC∗ is generated
only by the current flowing along the straight sides of S∗ and
therefore does not depend on the shape of C∗. We checked
that the integration of the elementary BSL field given by Eq.
(1) yields indeed the same Eqs. (14) and (15).

The field BIC∗ is not potential, because it is not curl-free.
However, the calculations show that the curl of this field is a
potential field given by the following gradient:

∇x ×BIC∗ =∇x

(
1

|x−R2|
− 1

|x−R1|

)
.

(16)

Thus, BIC∗ can equivalently be interpreted as the field gen-
erated by coronal potential current field under the constraint
R̂ · BIC∗

∣∣
x=R̂

= 0. This current field is produced by two
photospheric point sources of opposite polarities, which are
located at the foot points of the path C∗. This result matches
well the fact that the field BIC∗ is generated by the edge cur-
rent in the straight sides of S∗. The distributed current de-
fined by Eq. (16) simply provides a closure for this edge
current.

Taking into account that BIC∗ has no radial component
(see Eqs. (10) and (14)), we managed to uncurl Eq. (15) and
derive the corresponding vector potential

AIC∗ = x̂ T (x, r)
∣∣r=x−R2

r=x−R1
, (17)

where

T (x, r) = ln (x · r + |x|r) . (18)

Taking the curve of Eq. (17) one can verify that

BIC∗ =∇×AIC∗ , (19)

as required. Eqs. (17) and (19) explicitly state that BIC∗

is a toroidal magnetic field (Schuck et al. 2022), which sim-
ply means that BIC∗ is solenoidal and tangential to spherical
surfaces |x| = const.

The scalar field f(x,R1,R2) ≡ T (x, r)
∣∣r=x−R2

r=x−R1
re-

stricted on such a surface plays the role of the flux function
for BIC∗ , because the magnetic flux of this field through a
line element dl tangential to the surface is BIC∗ · dl× x̂ =

dl · ∇f . Using Eq. (18) and the foot point constraint,
R2

1 = R2
2 = 1, one obtains

f(x,R1,R2)
∣∣
|x|=const

= ln

[
1− x̂ · R

|x|
+

(
1− 2

x̂ · R
|x|

+
1

|x|2

)1/2
]∣∣∣∣∣

R=R2

R=R1

. (20)

Figure 3. Iso-contours of the TFFF given by Eq. (20) on two
different surfaces: |x| = 1 (thick lines on the yellow sphere) and
|x| = 1.5 (thin lines); the foot points of the corresponding current
path are separated by minor-arc angle equal to π/4.

The iso-contours of this flux function represent magnetic
field lines of BIC∗ , which all are nested in spherical surfaces
|x| = const (see Figure 3).

2.2.5. Magnetogram-matching BSL

Let us combine our results, given by Eqs. (1), (7), (14),
and (15), to express the full coronal magnetic field BI⊖ as
follows:

BI⊖ =

∫
C
(dBI + dBC) +Θ(x, r)

∣∣r=x−R2

r=x−R1
.

(21)

As shown above, this field is generated by the line current I
flowing along a closed path C ∪ C∗ (Figure 1) under the con-
dition that its radial component vanishes at the photospheric
boundary. BI⊖ is normalized to µI/(4πR⊙) and therefore
depends on the current I , radius R⊙, and shape of C, but not
on the shape of C∗, whose role is reduced to providing only
the closure for the coronal current.

If we superpose BI⊖ on a given ambient potential field,
the radial component of the composite field will remain un-
changed at the boundary. Therefore, Eq. (21) indeed rep-
resents the MBSL for determining the field of the current-
carrying path C that resides in such composite configurations.
For the paths tracking the MFR shapes, these configurations
approximate the magnetic field outside current-unneutralized
thin MFRs, which constitutes the major part of the coronal
volume.

2.2.6. Application to Modeling RBSL MFRs

It is of interest for modeling RBSL MFRs to derive another,
slightly reduced form of the MBSL. As shown in Figure 2 and
Appendix A.3, Eq. (21) admits a significant reduction: A part
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of its first term cancels its second term, which means that a
part of the compensating field produced by the line current
at the straight edges of the magnetic shell S∗∗ eliminates the
toroidal magnetic field. The explicit expression for such a
reduced form of the MBSL is written as follows:[

µI

4πR⊙

]
BI⊖ =

∫
C

r̂ × dr

r2

+

∫
C∗∗

{
1

R
r̂ × dr

r2
+

(
1− 1

R

)[
(r̂ · dr) r̂ × x̂

r2 (r̂ · x̂+ 1)

+

(
1

r
+

1

|x|

)
[(r̂ + x̂)× (r̂ × dr)]× x̂

r (r̂ · x̂+ 1)
2

]}
. (22)

The subphotospheric path C∗∗ here is the image of the coro-
nal path C under the inversion transformation, which is point-
wisely defined by Eq. (3).

One can see that there are two terms under the integral over
the path C∗∗ in Eq. (22). The first of them represents the
classical Bio-Savart field whose current, however, is “modu-
lated” along the path by the inverse length of the radius vec-
tor R. Without such a modulation of the current along the
path C∗∗, the required vanishing of the total radial field at the
boundary cannot be reached, as was previously demonstrated
by Eq. (4).

The second of the indicated terms describes the toroidal
field generated by the line current flowing on the radial sides
of magnetized infinitesimal triangles. These triangles consti-
tute the magnetic shell that is obtained by merging two orig-
inal shells, which were set up on the ruled surfaces S∗∗ and
S∗ with the same directrix C∗ ≡ C∗∗ (see Appendix A.3 and
Figure 2). The modulation factor (1− 1/R) here describes
the fill and drain of the line current on the path C∗∗ by the cur-
rents flowing on the radial sides of the triangles (see Figure
2(c)). This factor vanishes at the foot points of C∗∗, where
R = 1, which corresponds to the above mentioned elimina-
tion of the toroidal field together with its source, i.e., the line
current at the straight edges of S∗.

Eq. (3) allows one first to obtain the relationship between
the line elements of the paths C∗∗ and C (see Eq. (A24)) and
then to reduce Eq. (22) to the following integral along the
path C:[

µI

4πR⊙

]
BI⊖ =

∫
C

(
r̂

r2
− 1

R
r̂∗
r2∗

)
× dr +(

1− 1

R

)
x̂×

[
r̂∗ (r̂∗ · dr)

r2∗ (r̂∗ · x̂+ 1)
+(

1

r∗
+

1

|x|

)
(r̂∗ + x̂)× (r̂∗ × dr)

r∗ (r̂∗ · x̂+ 1)
2

]
, (23)

which is an alternative reduced form of the MBSL formulated
exclusively by means of the coronal current path.

It is also useful to rewrite our MBSLin terms of the vector
potential. We managed to calculate and transform it to the

following compact expression:[
µI

4π

]
AI⊖ = −

∫
C

dr

r

−
∫
C∗∗

[
1

R
dr

r
+

(
1− 1

R

)
x̂
(r̂ + x̂) · dr
r (r̂ · x̂+ 1)

]
. (24)

Besides the “modulated” classical BSL term, it has under the
second integral a less obvious term multiplied by (1− 1/R).
Its curl yields the term that enters into Eq. (22) with the same
factor and hence describes the same magnetized infinitesimal
triangles discussed above. Therefore, it can be obtained by
integrating the classical BSL kernel 1/r of the vector poten-
tial over the radial sides of an infinitesimal triangle of the
merged magnetic shell S∗∗. Alternatively, it can also be de-
rived simply by setting R1 = R + dR and R2 = R in
Eq. (17) and then calculating the leading term of its Taylor
expansion by dR. Thus, the nontrivial term considered de-
scribes the toroidal part of the vector potential produced by
each indicated triangle.

Using the same approach as in the derivation of Eq. (23),
we obtain the alternative form for our vector potential formu-
lated solely in terms of the coronal path C:[

µI

4π

]
AI⊖ = −

∫
C

(
1

r
− 1

Rr∗

)
dr

+x̂

∫
C

(
1− 1

R

)
(r̂∗ + x̂) · dr
r∗ (r̂∗ · x̂+ 1)

. (25)

Based on our previous studies (Titov et al. 2018; Titov et al.
2021), we now modify Eq. (24) for a thin current channel
with a circular cross section of radius a. We replace 1/r in
Eq. (24) with KI(r̃)/a, where KI(r̃) is a regularized BSL

kernel, a function of r̃ ≡ r/a, which differs from zero for
r̃ < 1 and smoothly transitions to 1/r̃ for r̃ > 1. Changing
also dr for −R′dl, we obtain the following generalized form
of Eq. (4) from (Titov et al. 2021):[

µI

4π

]
AI =

∫
C
KI(r̃)R′ dl

a

+

∫
C∗∗

KI(r̃)

[
R′

R
x̂

(
1− 1

R

)
(r̂ + x̂) · dr
(r̂ · x̂+ 1)

]
dl

a
.

(26)

Similarly to the above consideration of (24) and Eq. (25), we
can rewrite Eq. (26) in terms of the line integral only along
the coronal path C:[

µI

4π

]
AI =

∫
C

{[
KI(r̃)−

KI(r̃∗)

R

]
R′−

KI(r̃∗)

(
1− 1

R

)
(r̂∗ + x̂) · R′

(r̂∗ · x̂+ 1)
x̂

}
dl

a
. (27)

A more detailed consideration and application of this ex-
pression is beyond the scope of the present paper and will
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be described in future work. Here we just want to empha-
size that, in our RBSL method, it represents the axial vector
potential of a thin current-unneutralized MFR. By construc-
tion, the curl of AI defines the azimuthal magnetic field of
MFRs whose radial component vanishes at the photospheric
boundary outside MFR footprints even if the length of a mod-
eled MFR is comparable in value with the solar radius. This
new expression for AI significantly extends the ability of the
RBSL method to model realistic MFR configurations.

2.2.7. Illustrating Example of the MBSL Field

Figure 4. Top view of magnetic field lines for the configuration
defined by the magnetogram-matching Biot-Savart law (Eq. (21));
the inset shows the corresponding current path C (orange) and two
arbitrary starting points (close to the path) for the plotted field lines.

Figure 4 exemplifies BI⊖ for a specific current path by
showing two field lines whose lengths were restricted from
above by 103R⊙. If plotted without any restriction in length,
these field lines would indefinitely fill a part of the coro-
nal volume, since they are disconnected from the boundary.
However, the superposition of BI⊖ on, say, a bipolar ambient
potential magnetic field would “short circuit” the previously
disconnected field lines to the photosphere.

Despite the abstract meaning of BI⊖, its structure helps
us to understand the origin of some observed morphological
features, such as hook-like loops in sigmoidal MFR configu-
rations. Indeed, the modeling of such configurations suggests
that the MFR footprints reside at the periphery of magnetic
flux spots (Titov et al. 2018; Titov et al. 2021). This means
that, in our composite configurations, BI⊖ would likely pre-
vail the ambient field near the footpoits of the current path,
so that large curls of the field lines at these places (see Figure
4) should approximately track the corresponding field lines
in the sigmoidal configurations. Being “short-circuited” by

a weak but nonvanishing ambient field, these curls acquire
the shape of hooks that embrace the current path near its foot
points. In other words, these features are formed due to a
non-zero current flowing in a narrow channel whose foot-
prints are located in weak-field regions. Thus, they can be
considered as indirect evidence that the current in the MFRs
of sigmoidal configurations is unneutralized.

2.3. Magnetic Configurations with Distributed Currents

The results described in Section 2.2 for a closed-line cur-
rent can straightforwardly be extended to realistic configu-
rations, where current is distributed in the coronal volume.
To this end, we approximate the distributed current as run-
ning through a continuum of wires with infinitesimal cross
sections. The individual contribution of the wire to the total
field, the photospheric Br of which vanishes, can be obtained
by modifying Eq. (21) as shown below.

We find it convenient for applications to derive the MBSL

for distributed currents in a dimensional form, where the cur-
rent density J is measured in A/m2, while all space vectors
and lengths are still normalized to R⊙ as in our considera-
tion above. Having this in mind, we should change dr in
Eq. (21) for −J dV , where the volume element dV ≡ d3R

(normalized to R3
⊙) refers to a point R ≡ R. By doing this

substitution, we just follow a similar generalization of the
classical BSL for a wire to the system with a volumetrically
distributed current.

The contribution of the subphotospheric closure current
described by Θ(x, r) must be weighted with the correspond-
ing total current

(
J · R̂

)
dΩ in the wire, where dΩ ≡ d2R̂

is the boundary-surface element or the increment of the solid
angle Ω and R̂ is the normal to the boundary at the first foot
point, R1 = R = R̂, of the wire. The second of the two
conjugate foot points should be dropped out of this expres-
sion, as we are going to sum up their contributions point by
point rather than by pairs.

By superimposing the contributions of all these wires to the
total field with the help of Eqs. (1), (7), and (14), we arrive at
the following dimensional form of the MBSL for a distributed
current in the coronal volume V (R ∈ V : |R| ≥ 1) with the
photospheric boundary ∂V (R ∈ ∂V : |R| = 1) :

B̃ =
µR⊙

4π

∫
V

dV

{
J ×

(
r̂

r2
− r̂∗

Rr2∗

)
− 1

R

[
(r̂∗ · J) r̂∗

r2∗ (r̂∗ · x̂+ 1)
+(

1

r∗
+

1

|x|

)
(r̂∗ + x̂)× (r̂∗ × J)

r∗ (r̂∗ · x̂+ 1)
2

]
× x̂

}

+ x̂× µR⊙

4π

∫
∂V

dΩ

(
1

r
+

1

|x|

) (J · R̂
)
r̂

r̂ · x̂+ 1
, (28)
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where r = x − R is the vector from a volume or surface
element located at point R to the observation point x, J is
the dimensional current density at point R, and r̂ ≡ r/r.
Similarly, r∗ = x − R∗ is the vector from the inversion
image point R∗ = R/R2 to the observation point x, and
r̂∗ ≡ r∗/r∗.

Let us express the surface term in Eq. (28) by means of
the vector potential Af to make it obvious that this term de-
scribes a toroidal magnetic field. For this purpose, the part of
Eq. (17) that refers to the first foot point, R1 = R, of the
wire should be weighted with the total current

(
J · R̂

)
dΩ

in the wire and then integrated over the boundary surface.
Using explicitly Eq. (18) in this integral, one obtains the fol-
lowing result:

Af = f(x) x̂ , (29)

f(x)=µR2
⊙

∫
∂V

dΩ
(
J · R̂

)
Gf , (30)

Gf =− 1

4π
ln (x · r + |x|r) , (31)

which shows that the toroidal-field flux function (TFFF),
f(x), is determined via the convolution of the photospheric
radial component of the current density

(
J · R̂

)
with the

function Gf given by Eq. (31). In this respect, Gf is similar
to the Green’s function. However, the calculation of the ra-
dial current density corresponding to Gf shows that its spike
is not represented by the Dirac delta function, as it would be
for the true Green’s function. Therefore, we will call Gf the
source function.

By construction, the surface term in Eq. (28) describes
the toroidal field related only to subphotospheric closure cur-
rents. The other part of this field, both in the volume and at
the surface, is produced by coronal currents. As will be ex-
plained in Section 3, the total photospheric toroidal field is
generated by all elements of the current tubes that penetrate
the surface.

Generalizing Eq. (21) to Eq. (28), we used as an ideal-
ized prototype the configuration with a line current rooted at
the surface. This seems at first to imply that our generalized
configuration with a distributed current should consist of only
elementary current tubes that are also rooted at the surface.
However, this implication is not correct and Eq. (28) actually
describes the configurations with a more general current con-
nectivity. Indeed, the elementary MBSL fields are integrated
in Eq. (28) elementswise throughout the exterior volume, the
current elements of which contribute to the integral identi-
cally, regardless of whether or not they provide coronal clo-
sure to the interior currents piercing the surface. In particu-
lar, a set of these elements can form elementary current tubes
that are fully disconnected from the surface, as occurs, for
example, in the heliospheric current layer. The presence of
the disconnected current tubes does not affect at the surface

the radial components of both magnetic and current-density
fields, which is sufficient then for Eq. (28) to be applicable
to such configurations.

However, the connectivity of the current elements does
matter as to whether or not the resulting field at the surface
is potential. As follows from Section (2.2.2), only the ele-
ments that form the current tubes that are closed and fully
detached from the surface generate a potential field in it. In
contrast, current tubes that are rooted, with at least one of
their ends at the surface, make the photospheric field nonpo-
tential. The latter is also true, of course, for the coronal cur-
rent tubes touching the surface, even if these tubes are partly
detached from it and form closed circuits. This would imply
the presence of a non-vanishing tangential current density on
the upper side of this surface, i.e., at |x| = 1+0, which means
the non-potentiality of the magnetic field there.

In contrast to this conclusion, Schuck et al. (2022) pos-
tulated that the photospheric field is decomposed as a sum
of the toroidal and two poloidal fields, where both poloidal
fields must be purely potential. This postulate is substanti-
ated by invoking Gauss’s insight on terrestrial toroidal cur-
rents, namely that similar currents flowing separately in
the solar interior and exterior can generate only a potential
poloidal field at the upper and lower sides of the boundary
surface, at |x| = 1+0 and |x| = 1−0, respectively. This
insight is crucial in their method of the photospheric field
decomposition to explicitly extract the poloidal fields and at-
tribute them separately to the interior and exterior currents.
However, note that individually these two fields refer to dif-
ferent sides of the surface |x| = 1 and therefore cannot be
both attributed to one level |x| = 1+0, unless the toroidal
current density identically vanishes there. The latter condi-
tion is generally not satisfied, which automatically makes the
corresponding poloidal field at |x| = 1+0 nonpotential. It
has yet to be seen how essential this issue is for applications
of this method to vector magnetic data in order to identify
the locations of MFRs, but the current-carrying part of the
poloidal field at |x| = 1+0 is evidently overlooked in this
method.

Following a similar approach that we used to derive Eq.
(23) for the line current, we obtain an alternative form of the
MBSL for distributed currents, which is expressed solely in
terms of the integral over the coronal volume:

B̃ =
µR⊙

4π

∫
V

dV

{
J ×

(
r̂

r2
− r̂∗

Rr2∗

)
+

(
1− 1

R

)[
(r̂∗ · J) r̂∗

r2∗ (r̂∗ · x̂+ 1)
+(

1

r∗
+

1

|x|

)
(r̂∗ + x̂)× (r̂∗ × J)

r∗ (r̂∗ · x̂+ 1)
2

]
× x̂

}
.(32)

The magnetic field of coronal currents would look exactly
like B̃ if the solar globe were an ideal rigid conductor with
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the surface polarization currents that completely shield the
globe interior from penetration of the coronal magnetic flux.
In our MBSL representation, the role of such polarization cur-
rents is played by subphotospheric closure currents and ele-
mentary fictitious magnetic shells described in Section 2.2.3
and Appendix A.

We expect that the form of MBSL provided by Eq. (32)
should be useful for generalizing the method of Wheatland
(2004) for the NLFFF extrapolation from planar to spherical
geometry. To represent the current-carrying magnetic field
with vanishing Br at the boundary plane, Wheatland used the
classical BSL for coronal currents and their images mirrored
about the photospheric plane, which allowed him to develop
a highly parallelizable code for computing NLFFF equilibria.
This important feature is likely to be inherited in a similar
code for spherical geometry if one develops it on the basis
of Eq. (32). It is not difficult to verify that in the limit of
vanishing curvature of the solar surface only the first term
in the integrand of Eq. (32) survives to represent coronal
current elements and their images that are mirrored about the
surface, exactly as in Wheatland’s method.

3. DECOMPOSITION OF VECTOR MAGNETOGRAMS

Section 2 demonstrates that the subphotospheric currents
manifest themselves in the corona exclusively through the
photospheric distributions of the radial magnetic field Br and
current density Jr—no other parameters related to the inte-
rior currents affect the exterior magnetic fields. According
to our MBSL approach, the photospheric magnetic field, as
defined at |x| = 1+0, can be decomposed into the following
three parts:

1. The potential magnetic field Bpot whose Br is gener-
ated by subphotospheric currents that do not flow be-
yond the surface |x| = 1.

2. The toroidal magnetic field, which is superposed of
the BSL fields produced by subphotospheric closure
currents and fictitious magnetic shells compensating
Br of those currents; the resulting field is determined
solely in terms of the photospheric Jr distribution and
does not depend on the paths of the closure currents.

3. The magnetic field generated by coronal currents un-
der the condition that their photospheric Br vanishes;
this condition is sustained by additional fictitious sub-
photospheric magnetic shells.

In our previous preliminary study (Titov et al. 2024) we
demonstrated that this decomposition allows one to identify
the location of MFRs in projection to the photospheric sur-
face. It is particularly important that such a localization of
MFRs can be done in advance of modeling PECs by using
only magnetic data.

However, we have recently realized that there is one aspect
of this decomposition which is not fully satisfactory, namely,
that its third part, associated with the coronal currents, in-
cludes both poloidal and toroidal components. In a more con-
sistent decomposition, the toroidal and poloidal fields should
be separated from each other. Fortunately, the corresponding
redistribution of these fields within our decomposition is not
difficult to perform.

Indeed, the total coronal magnetic field is

B = B̃ +Bpot , (33)

where B̃ is our MBSL field, which is equivalently described
by either Eq. (28) or (32). Using Eqs. (1b) and (6c) from
(Schuck et al. 2022) and our Eq. (33), we obtain that the total
toroidal field BT at the surface in our approach is described
as follows:

BT = ∇tT × x̂ , (34)

x̂ · ∇×B = x̂ · ∇t × B̃ = x · ∇t ×BT

= −∇2
tT = µR⊙(x̂ · J) . (35)

where T is the toroidal scalar field or the TFFF of the total
toroidal field, and

∇t = ∇− x̂ (x̂ · ∇)

is the dimensionless operator ∇ acting tangentially to our
boundary surface |x| = 1.

Although, by construction, B̃ is strictly tangential to the
boundary, its surface divergence can generally differ from
zero. This is because vanishing of its radial component,
(x̂ · B̃)

∣∣
|x|=1+0

, does not imply that the radial derivative of

this component, (x̂ · ∇)(x̂ · B̃)
∣∣
|x|=1+0

, also vanishes. Us-
ing this fact and Eqs. (1a) and (6b) from (Schuck et al. 2022),
we obtain for the remaining photospheric poloidal part of B̃,
namely,

B̃ −BT ≡ BS̃ = ∇tS̃ , (36)

the following relationships:

∇t ·BS̃ = −(x̂ · ∇)(x̂ ·BS̃)

= ∇2
t S̃ = ∇t · B̃ , (37)

where S̃ is the spheroidal scalar field for B̃
∣∣
x=1+0

or sim-
ply the surface potential for the tangential poloidal field
BS̃

∣∣
x=1+0

. The symbol tilde is used as accent in S̃ to empha-
size that this potential describes not the full poloidal field but
only a part of it—the one that is associated only with the cur-
rents flowing in the corona, irrespective of their connectivity
to the boundary.
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Thus, by combining Eqs. (33) and (36), we arrive at the
desired decomposition of a given photospheric magnetic field
B at x = 1+0:

B = Bpot +BT +BS̃ , (38)

in which the potential magnetic field Bpot can be calculated
in common way by using Br of measured magnetograms, so
that Br is identical to the radial component of Bpot. The
toroidal and poloidal fields, BT and BS̃ , both purely tangen-
tial to the surface, are defined in terms of their scalar fields,
T and S̃, by Eqs. (34) and (36), respectively. These scalar
fields, in turn, are solutions of the corresponding Poisson’s
equations on the sphere |x| = 1, which are Eqs. (35) and
(37), the right-hand sides of which are defined by the surface
curl and divergence, respectively, of the field B̃ = B−Bpot,
which itself is derived from vector magnetograms.

In principle, one can determine BS̃ without first calculat-
ing the potential S̃ and then its surface gradient: it can be
done simply by combining Eqs. (33) and (36) as follows:

BS̃ = B −Bpot −BT . (39)

However, as will be clear further on, it is still worth calcu-
lating the potential S̃, because the representation of BS̃ in
terms of S̃ has its own merits. Eq. (39) then can be used to
validate that it yields the same result as Eq. (36).

Compared to the decomposition by Schuck et al. (2022),
our decomposition is defined by Eq. (38) and also has three
parts, one of which, BT , is identical in both decompositions,
while the other two parts are quite different.

Our potential magnetic field Bpot refers to the level |x| =
1+0, i.e., to the upper side of the surface, and is uniquely
determined by the observed photospheric Br distribution.
The analogous potential poloidal field BP< in (Schuck et al.
2022) refers to the same level, but corresponds only to a part
of this distribution.

Their other potential poloidal field BP> corresponds to the
remaining part of the observed Br distribution and refers to
the lower side of the surface, that is, strictly speaking, to the
different level |x| = 1−0. In contrast, our poloidal field BS̃

refers to the same level |x| = 1+0 and has no radial com-
ponent there. Moreover, as a surface vector field, BS̃ is po-
tential, but it is generally nonpotential as a 3D vector field.
This is because, in general, there is a non-vanishing radial
gradient of this poloidal field at |x| = 1+0, which sustains
the corresponding toroidal current density there.

In other words, our decomposition admits that the photo-
spheric field B − BT can generally be nonpotential, while
the alternative decomposition by Schuck et al. (2022) postu-
lates that this field is always potential. This issue is proba-
bly due to the fact that their poloidal fields BP< and BP>

refer to different sides of the boundary surface. However, as-
signing BP< and BP> to the same level would mean that

the radial gradient of the photospheric magnetic field and the
corresponding tangential current density are considered to be
negligible, which appears to be an incorrect assumption. The
importance of this issue from a practical point of view has
yet to be seen. Regardless of that, our decomposition is free
from this inconsistency and, as shown below in Section 3.4,
shows great potential in analyzing vector magnetic data.

3.1. Potential Magnetic Field at the Boundary

Let longitude ϕ and colatitude θ represent an observation
point x̂ at the photospheric boundary. In the global Cartesian
system of coordinates with the origin at the center of the Sun,
we have then

x̂ = (sin θ cosϕ, sin θ sinϕ, cos θ) . (40)

Similarly, the unit vector

R̂ = (sin θ′ cosϕ′, sin θ′ sinϕ′, cos θ′) (41)

then represents a source point with the longitude ϕ′ and co-
latitude θ′, where we assume the radial magnetic component
Br ≡ (B · R̂) to be known. To derive the expression for
the photospheric tangential component of the potential mag-
netic field, we will use the Green’s function for the external
Neumann problem of the Laplace equation in spherical ge-
ometry. Nemenman & Silbergleit (1999, see their Eq. (8))
provided an explicit formula for this Green’s function. For
our length normalization and chosen notations of variables,
the latter can be written as follows:

Gpot =
1

4π

[
2

|x− R̂|
− ln

(
1− x · R̂+ |x− R̂|

|x| − x · R̂

)]
.

(42)

Being multiplied by magnetic flux (B · R̂)R2
⊙ dΩ′ at a

source point R̂, where dΩ′ = sin θ′ dθ′ dϕ′ is an increment
of the solid angle at this point, this function defines the cor-
responding contribution of the source to the scalar magnetic
potential at a given observation point x. Therefore, the fol-
lowing convolution over the unit sphere

Bpot = −R⊙

∫
dΩ′ (B · R̂)∇xGpot

(43)

defines the total potential magnetic field Bpot(x) at |x| > 1

produced by all photospheric sources.
Eliminating now the radial component from this expres-

sion, we obtain at x → x̂ the following formula for the tan-
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gential potential field at the surface:

x̂× (Bpot × x̂)
∣∣∣|x|=1+0

= R⊙

∫
dΩ′ (B · R̂)GBpot

,

(44)

GBpot ≡ −∇tGpot

∣∣∣|x|=1+0

= − (θ̂ · R̂) θ̂ + (ϕ̂ · R̂) ϕ̂

π (2 + ∆)∆3
, (45)

where θ̂ and ϕ̂ are the corresponding unit vectors of our
spherical system of coordinates at observation point x̂ and

∆=
√
2 (1− x̂ · R̂)1/2 (46)

is the length of the chord that connects the source and obser-
vation points. Trigonometric calculations yield

x̂ · R̂=
1

2
{[1 + cos(ϕ− ϕ′)] cos(θ − θ′)

+ [1− cos(ϕ− ϕ′)] cos(θ + θ′)} , (47)

ϕ̂ · R̂=− sin θ′ sin(ϕ− ϕ) , (48)

θ̂ · R̂=
1

2
[sin(θ + θ′)− sin(θ − θ′)] cos(ϕ− ϕ′)

−1

2
[sin(θ + θ′) + sin(θ − θ′)] . (49)

3.2. Toroidal Magnetic Field at the Boundary

Assume that the surface distribution of the radial compo-
nent of the current density, Jr ≡ (J · R̂), is known at each
point R̂ of the surface. Then the toroidal scalar field T ,
or the full TFFF, is a solution of Poisson’s equation on the
unit sphere, which is defined by the underlined part of Eq.
(35). This solution can be represented by the convolution
of this distribution with the corresponding Green’s function
(see, e.g., p. 182, Beltrán et al. 2019),

GSP=− 1

2π
ln∆ , (50)

as follows:

T = µR⊙

∫
dΩ′ (J · R̂)GSP . (51)

Application of this formula to particular Jr distributions
shows that the resulting T is approximately twice as large
as the incomplete TFFF, f

∣∣
|x|=1+0

, defined by Eq. (30) and
produced only by subphotospheric closure currents. This re-
sult is expected, as the source function, given by Eq. (31), at
the surface transforms to

Gf

∣∣∣|x|=1+0

= − 1

4π
ln [∆ (1 + ∆/2)] , (52)

which approximately equals GSP/2 at small ∆, where the
main contributions to the convolution comes from.

Using now Eqs. (34) and (51) we obtain the following ex-
pression for the full toroidal vector field itself at the surface:

BT =µR⊙

∫
dΩ′ (J · R̂)GBT

, (53)

GBT
≡∇tGSP × x̂

=
1

2π∆2

[
(ϕ̂ · R̂) θ̂ − (θ̂ · R̂) ϕ̂

]
, (54)

where Eqs. (46)–(49) should be applied to completely spec-
ify GBT

.
Thus, both the TFFF and the toroidal magnetic field can be

determined at the boundary via the convolutions of the sur-
face radial current density (J ·R̂) and corresponding Green’s
functions.

3.3. Current-Carrying Poloidal Field at the Boundary

The spheroidal scalar field S̃ is also a solution of Pois-
son’s equation on the sphere |x| = 1, which is defined by
the underlined part of Eq. (37). The right-hand side of
this equation is the surface divergence of the tangential field
B̃ = B − Bpot, which is derived from Eqs. (44) and (45),
and the corresponding vector magnetic data. Thus, for a
given divergence of B̃, we obtain

S̃ = −
∫

dΩ′ (∇t · B̃)GSP , (55)

where GSP is defined by Eq. (50).
Following the definition of the poloidal field, which is pro-

vided by the underlined part of Eqs. (36), we now take the
surface gradient of Eq. (55) to obtain

BS̃ =

∫
dΩ′ (∇t · B̃)GBS̃

, (56)

GBS̃
≡∇tGSP

=
1

2π∆2

[
(θ̂ · R̂) θ̂ + (ϕ̂ · R̂) ϕ̂

]
, (57)

where Eqs. (46)–(49) should be used again to completely
specify GBS̃

.
Thus, both the spheroidal potential S̃ and the correspond-

ing tangential poloidal field BS̃ are determined at the bound-
ary via the convolutions of the surface divergence ∇t ·B̃ and
corresponding Green’s functions.

3.4. Examples of Vector Magnetogram Decomposition

To see how our decomposition method can help in analyz-
ing observed vector magnetograms, note first that isocontours
of the toroidal scalar field T , defined by Eq. (51), represent
the field lines of BT , defined by Eqs. (53) and (54). There-
fore, plotting equally spaced isocontours of T and superim-
posing them on the corresponding distribution of BT ≡ |BT |
is a natural way to visualize the toroidal field on the surface.
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Figure 5. The decomposition of the photospheric magnetic field for the PEC model of the 2009 February 13 CME: top view on the current
(a) and magnetic field (b) structures (see details in Titov et al. 2021); iso-contours of the toroidal scalar field T are superimposed on the
photospheric distributions of slogQ (c), Jr (d), Br (e), toroidal field BT (f); iso-contours of the spheroidal scalar field S̃ are superimposed
on the photospheric distributions of the surface divergence ∇̄t · BS̃ ≡ ∇t · BS̃/R⊙ (g), Br (h), and poloidal field BS̃ (i); both types of
iso-contours are equally spaced, and their colors stepwise change from dark blue to light brown with growing the corresponding values of T
and S̃; cyan and magenta arrows, which are set on a grid of equidistant points, depict the directional fields of BT (c) and BS̃ (f), respectively;
thick green line represents the PIL.

Similarly, isocontours of the spheroidal potential S̃, de-
fined by Eq. (55), are orthogonal to the corresponding
poloidal field BS̃ , defined by Eqs. (56) and (57). Therefore,
plotting equally spaced isocontours of S̃ and superimposing

them on the corresponding distribution of BS̃ ≡ |BS̃ | is also
a natural way to visualize our tangential poloidal field at the
surface.
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As shown further on, this type of field visualization should
be particularly useful for realistic magnetic configurations.
The surface sources, Jr and ∇t · B̃, for the current-carrying
part of the photospheric field, B̃, in these configurations are
usually represented by a myriad of small concentrations of
different sizes, which are scattered semi-randomly over the
surface. However, even for such complex sources, the corre-
sponding isocontours of T and S̃ reveal coherent field struc-
tures on length scales larger than the concentration sizes.

Although all coronal currents, regardless of their type and
connectivity, contribute to our field B̃ = BT + BS̃ at
|x| = 1+0, the main contribution to this field comes from
currents flowing at low heights in the corona. Therefore, the
visualization of BT and BS̃ has to reveal the photospheric
imprint of primarily these currents. The contributions of the
corresponding closure-current elements and elementary mag-
netic shells have only to enhance this imprint. This is because
they essentially play the same role as the image current in
configurations with planar geometry, where coronal and mir-
rored current elements produce codirected contributions to
the photospheric field B̃.

As a rule, MFRs reside at low heights above and along
segments of the polarity-inversion line (PIL). The total ax-
ial current in such MFRs can often differ from zero or, in
other words, be unneutralized on the length scale of the seg-
ment size. Visualizing the fields BT and BS̃ around these
segments then allows one (1) to establish this fact and (2) to
determine the direction of the current. Together with the iso-
contours of T and S̃, this allows one to localize such MFRs
in projection to the solar surface. It should be emphasized
that this important information is obtained by using only vec-
tor magnetic data without modeling the corresponding PECs
themselves.

3.4.1. The Modeled PEC of the 2009 February 13 CME

Let us see how our decomposition method works in the
case of a simple sigmoidal PEC model, which has previously
been described as Solution 1 in (Titov et al. 2021). It was
found there that the core of this PEC contains an MFR em-
bedded in a sheared magnetic arcade such that a substantial
part of its electrical current is concentrated in layers at the
central part of the PEC. Panels (a) and (b) in Figure 5 de-
pict the top views of the corresponding current and magnetic
field structures in the core. Comparison of these structures
with the results of the decomposition will help us to assess
the potential of this method.

The photospheric distribution of Jr obtained in the model
is rather non-trivial. Panel (d) shows that this distribution
comprises relatively large spots with low values Jr and nar-
row stripes with high values Jr that stretch near and along
the central part of the PIL. In contrast, the TFFF, computed
for this Jr–distribution by means of Eqs. (50) and (51), show

a relatively simple pattern of equidistant isocontours. They
clearly reveal two extremums within the MFR footprints,
which are located at the periphery of the magnetic flux spots
(see panels (d) and (e)).

Using Eqs. (53), (54), (56), and (57), we computed the
photospheric magnetic components BT and BS̃ whose di-
rections in the region of interest are depicted by cyan and
magenta arrows in panels (d) and (g), respectively. They both
match the direction of the modeled unneutralized MFR cur-
rent that flows in our PEC from positive to negative magnetic
polarity. Indeed, first, as panel (d) shows, the directional field
of BT (cyan) forms a clockwise and counterclockwise vortex
at positive and negative magnetic polarity, respectively. Both
vortices are centered around the footprints of the MFR. Sec-
ond, panel (g) shows that at the PIL segment, above which
the MFR resides, the directional field of BS̃ (magenta) is
directed from negative to positive magnetic polarity. These
properties of BT and BS̃ evidently agree with what the curl
right-hand rule would provide us, given the known location
and direction of the MFR current.

Panels (f) and (i) present the grayscaled distributions of
BT ≡ |BT | and BS̃ ≡ |BS̃ |, on top of which the correspond-
ing directional fields and isocontours of T and S̃ are over-
layed. Based on the density of these isocontours, BT and BS̃

are enhanced near the MFR in somewhat different ways. In
particular, the BT –distribution is largely concentrated in the
central part of the PIL and, to a lesser extent, outside the PIL
by encircling the MFR footprints. The BS̃–distribution forms
two J-like hooks adjacent to the same central part of the PIL.
Both distributions outline a sigmoidal shape, which appears
as a photospheric “shadow” of the corresponding MFR in the
corona.

This sigmoidal shape is also visible in the Q–map of the
region of interest presented in panel (c) as the distribution
of slogQ, which is essentially log10 of the squashing fac-
tor Q taken with the sign of local Br (Titov et al. 2011).
The high–Q lines generally mark the footprints of quasi-
separatrix layers (QSLs, Priest & Démoulin 1995; Démoulin
et al. 1996a,b) formed by strongly divergent magnetic field
lines. QSLs serve as interfaces between magnetic flux sys-
tems with different types of field-line connectivity to the
boundary. The meaning of this, rather complex, Q–map for
our PEC was previously considered in detail by Titov et al.
(2021). Here we just point out that each magnetic polarity in
this map contains a high–Q line of J–like shape that wraps
around one of the two extremums of the TFFF. And, as ex-
plained above, these extremums are centered on the MFR
footprints.

Thus, the distributions of both Q and T allow approxi-
mately the same location of the MFR footprints to be identi-
fied. However, the Q–maps are calculated by using the mag-
netic field of PECs, the modeling of which is technically a
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nontrivial and numerically expensive procedure. In contrast,
the calculation of T–maps requires only a relatively simple
convolution of the photospheric Jr–distributions, which can
be directly determined from vector magnetograms without
modeling PECs themselves. We can also anticipate that the
calculations based on similar convolutions enable one to find
the photospheric toroidal and poloidal fields, BT and BS̃ ,
which, in combination with the iso-contours of T and S̃, pro-
vide valuable constraints for modeling MFR configurations.

3.4.2. The PEC at the onset of the 2011 October 1 CME

From a practical point of view, it is important to check how
our decomposition technique works with real vector magne-
tograms. For this purpose, let us apply it to the HMI SHARP
cea vector magnetic data for the AR 11305 obtained approx-
imately at 9:36 UT when the 2011 October 1 CME event
started. In the following, we present the resulting decompo-
sition for two different maps of Jr.

The first of these maps is derived by simply taking appro-
priate finite differences of the tangential components of the
magnetogram. The decomposition based on this map is illus-
trated in Figure 6, where panel (a) demonstrates that the dis-
tribution of Jr is fragmented in numerous negative and pos-
itive spots of different strengths and sizes. The current spots
of small strengths and sizes appear to be randomly distributed
throughout the AR. In contrast, a signification fraction of cur-
rent spots of larger strengths and sizes is aggregated in two
unipolar necklace-like structures of opposite signs. As seen
in the region near the largest spot of negative flux in panels
(a) and (b), these “necklaces” stretch along the PIL with a
shift to each other, each on its own side of the PIL.

Despite such a complexity of the Jr–map, the correspond-
ing equally spaced iso-contours of T form a remarkably sim-
ple and coherent pattern, which clearly reveals the presence
of three extremums of T . One of them is a maximum located
at the largest spot of negative flux, while the other two are
minima located at two separate aggregations of small positive
flux spots (see panel (b)). The randomness mentioned above
of weak current spots manifests itself only in a noticeable
jaggedness of the isocontour lines. Apparently, this property
of T is due to the averaging of counteracting contributions
from different current spots in the AR. Indeed, the contri-
butions to T from two neighboring current spots of similar
strengths and sizes but of opposite signs have to partially
cancel each other in the convolution defined by Eqs. (50)
and (51).

Panel (c) complements this information by showing the
gray-shaded distribution of BT overlaid with the correspond-
ing directional field of BT (cyan) and the isocontours of T .
One can see from this panel that the toroidal field BT is
strongly sheared at the PIL and concentrated at the current-
spot “necklaces”. This fact is also confirmed by the overlaid

iso-contours, which tend to align with and condense in the
“necklaces”.

An additional complementary information on our configu-
ration is obtained by visualizing the corresponding poloidal
field BS̃ , the key constituent of which are the equally spaced
isocontours of S̃. Taking the appropriate finite differences of
B̃ = B − Bpot at the boundary, we first determine its sur-
face divergence, which is equal to ∇t ·BS̃ . Then, taking the
convolutions defined by Eqs. (50) and (55)–(57), we calcu-
late the desired S̃ and BS̃ . Panels (d)–(f) in Figure 6 depict
the obtained results.

The distribution of ∇̄t · BS̃ ≡ ∇t · BS̃/R⊙ shown in
panel (d) is as fragmented and irregular as the distribution of
Jr for this configuration. Nevertheless, the iso-contours of S̃
form a nice coherent pattern. Similarly to the relationship be-
tween Jr and T , the irregularity of the ∇̄t ·BS̃–distribution
manifests itself only in a noticeable jaggedness of the isocon-
tourlines of S̃.

Panels (e)–(f) show that the field BS̃ is localized in the PIL
and particularly at the “necklaces”. However, in contrast to
BT , it practically has no shear by traversing the iso-contours
of S̃ perpendicularly out from the largest spot of negative
flux. This mutual orientation of the field BS̃ and iso-contours
of S̃ passing through the “necklaces” remains qualitatively
the same when going eastward along these iso-contours from
one minimum of T to the other.

Similarly to the case considered in Section 3.4.1, the de-
scribed decomposition of the photospheric field can be in-
terpreted as follows. The configuration in the study con-
tains two current channels, which are presumably MFRs that
jointly start at the maximum of T (counterclockwise vortex)
and separately end at one of the two minima of T (clock-
wise vortices). The direction of these currents qualitatively
matches what the curl right-hand rule requires for the direc-
tions of both the vortex circulations and the field BS̃ at those
isocontours of T that pass through the current-spot “neck-
laces”. As shown in the following, this interpretation also
compares well with a numerical PEC model that we have de-
veloped earlier by using only the photospheric distribution of
Br from the available magnetic data.

However, before doing this comparison, let us assess how
sensitive our results are to the errors of magnetic field mea-
surements. For this purpose, we have made a similar decom-
position of the same vector magnetic data using a modified
Jr–map, which is obtained by cleaning up the previous one
from the current values with a large uncertainty of the mea-
surement. The uncertainty in the current for each pixel is
propagated from the provided tangential magnetic field er-
ror data. Errors due to tangential field disambiguation are
recorded by the conf disambig parameter (Hoeksema et al.
2014). The pixels are kept in the cleaned map if they sat-
isfy the following conditions: (1) their current is greater than
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Figure 6. Decomposition of the vector magnetic data for the AR 11305 at 9:36 UT when the onset of the 2011 October 1 CME event occurred:
the same colors for the lines and arrows as in panels (d)–(i) of Figure 5 are used to show the directional fields of BT (c) and BS̃ (f) along
with equally spaced isocontours of T , superimposed on the corresponding distributions of Jr (a), Br (b), and BT (c), and equally spaced
iso-contours of S̃, superimposed on the corresponding distributions of ∇̄t · BS̃ (d) , Br (e), and BS̃ (f). The blue-red distribution of Br is
overlaid on the gray-shaded areas of Br ≥ 100 G to bracket the PIL along which an MFR resides; the MFR splits into two parts with the
footprints located at the extremums of T , one in positive polarity and two in negative one.

Figure 7. A similar set of the panels as in the first raw of Figure 6 for the same vector magnetogram, but for the convolutions of the Jr

distribution (a) where weak current spots with strengths below the estimated error of the measurements have been excluded.

1.0 times the corresponding error, and (2) they have high
confidence in the disambiguation algorithm. This cleaning
procedure essentially removed most of randomly distributed
weak-current spots from the data, while keeping there strong-
current spots. In particular, the two necklace-shaped struc-
tures mentioned above have been preserved in the resulting
Jr–map (panel (a) in Figure 7).

Compared to the previous Jr–map, the new one provides
the distribution of T with much smoother iso-contours, be-
cause incoherent weak current spots no longer contribute to
the corresponding convolution of Jr. However, the equally
spaced isocontours of T in panel (b) demonstrate similar
patterns: They reveal again two clockwise and one coun-
terclockwise vortices at approximately the same locations as
before. However, these patterns now correspond to a differ-
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Figure 8. A similar set of the panels as in Figure 6, but for the decomposition of the photospheric magnetic field in the PEC of the 2011
October 1 CME event, which was modeled by β = 0 MHD simulations. The MFR was constructed in this PEC using RBSLand helicity
pumping methods under the constraints provided by the observed photospheric distribution of Br and the corresponding coronal extreme
ultraviolet (EUV) images, as described in (Titov et al. 2018; Titov et al. 2021; Titov et al. 2022).

ent set of T values, since many weak current spots have not
been included in the convolution. The exclusion of positive
weak-current spots, those that are grouped within the largest
negative flux spot (see panels (a) and (b) in Figure 6), causes
only a small shift of the counterclockwise vortex to the bor-
der of this flux spot (cf. panels (b) in Figures 6 and 7).

We see that despite the significant differences between the
original and cleaned Jr–maps, both decompositions reveal
the possible presence and location of the two MFRs in the
PEC under study. Therefore, such an outcome of our de-
composition procedure appears to be rather robust to errors
of measurement of the photospheric magnetic field. This is
because, by construction, the distribution of T is relatively
insensitive to incoherent, even if multiple, small spots of the
input Jr–distributions.

An additional evidence of the latter we find by compar-
ing the above decomposition results with those that refer to
our β = 0 MHD modeling of the 2011 October 1 CME
event. The results of the field decomposition for this model
are shown in Figure 8, which presents panels similar to those
of Figures 6 for the moment when the modeled MFR starts
to erupt.

This model was constructed long before the development
of our decomposition technique. The first steps of this model
construction, using our RBSL method to build and optimize

an MFR in the PEC under study, were described in (Titov
et al. 2018; Titov et al. 2021). Later, the constructed PEC
was energized towards an eruption by applying our helicity
pumping method (Titov et al. 2022).

Note that the modeled PEC was constrained by using only
the observed photospheric Br–distribution and the corre-
sponding EUV images of the AR. These images were used,
in particular, to identify possible locations of the MFR foot-
prints, which were needed, in turn, to construct our initial
RBSL MFR. By comparing Figures 6–8 one can see that
the extremums and corresponding vortices of T derived for
our modeled and observed vector magnetic data match well
enough at the footprints of the MFR. A similar conclusion
about the poloidal field BS̃ can be drawn for the region where
the MFR is located by comparing panels (d)–(f) in Figures 6
and 8.

Moreover, during the MHD relaxation of our initial ap-
proximate equilibrium, our initially single RBSL MFR split
to produce another MFR of shorter length. To the end of
the relaxation, a distinct footprint of the new MFR has been
formed in the positive magnetic polarity, while its footprint
in the negative polarity remained unified with the footprint
of the initial MFR. The locations of both these footprints are
consistent with what our decomposition of the observed vec-
tor magnetogram predicts. It is remarkable that such a good
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match occurred in spite of significant differences in the cor-
responding Jr–maps.

4. SUMMARY AND CONCLUSIONS

When modeling PEC equilibria under constraints provided
by observed magnetic data, it is convenient to treat the
current-carrying and potential parts of the PEC separately,
at least as far as the contributions of these parts to the ra-
dial magnetic field component, Br, at the boundary are con-
cerned. We have successfully used this separation in our pre-
viously proposed RBSL method for constructing MFR equi-
libria (Titov et al. 2018; Titov et al. 2021). However, this was
done in a restricted form that only allows one to efficiently
construct MFRs with lengths smaller than the solar radius.
The present work surmounts this limitation in our previous
version of the RBSL method. In addition, the new approach
presented in this paper could be used to extend other meth-
ods, particularly those that explicitly use the BSL to construct
PEC equilibria (e.g., Wheatland 2004). To this end, we have
derived the MBSL for a coronal current that can either be con-
centrated at a given path or distributed in the volume (see
Eqs. (23) and (32), respectively). By definition, the MBSL

determines the magnetic field of this current, under the con-
dition that only a tangential field component is produced on
the photospheric surface. We achieved this by introducing
for every BSL current element, irrespective of whether it be-
longs to coronal currents or to the subsurface closure current,
an auxiliary fictitious source of a potential magnetic field,
given by Eqs. (6) and (7). This is done in such a way that the
radial components of the current element and associated ficti-
tious source at the surface compensate each other. These ele-
mentary sources of the compensating field are represented by
magnetized triangular shells, one vertex of which is located
at the center of the Sun and two others below the surface at
an infinitesimal distance from each other.

Using this MBSL, we derived an elegant expression, given
by Eq. (25), which provides the magnetogram-matching vec-
tor potential of a line current of arbitrary shape. The regular-
ized version of this expression, given by Eq. (27), substan-
tially improves our RBSL method, in particular, the iterative
optimization procedure for finding an MFR shape with min-
imized Lorentz forces (see Titov et al. 2021). The modified
procedure now allows one to keep the same background po-
tential field throughout all iterations of the optimization, re-
gardless of the length of the PEC (filament channel) to be
modeled.

Applying our approach solely to the subphotospheric clo-
sure current, we then derived that the field it produces in the
corona and on the surface is purely toroidal. This field has
no radial component and is expressed in terms of the convo-
lution of the photospheric radial current density, Jr, and the
corresponding source function (see the last term in Eq. (28)

and the corresponding vector potential represented by Eqs.
(29)–(31)). We demonstrated that elementary contributions
to this convolution originate from the radial edge currents
of our elementary magnetic shells. It is of particular impor-
tance that this toroidal field does not depend on the shape of
the closure currents, which implies that these currents man-
ifest themselves in the corona only by means of the surface
Jr–distributions. However, we have shown that this field is
approximately one-half of the total toroidal field BT on the
surface. The remaining half of BT is generated by the coro-
nal currents that together with the subphotospheric closure
currents form full circuits in space.

Based on these results, we have developed a new method
for decomposing an observed photospheric magnetic field B

into the following three parts: (1) the potential field Bpot

calculated from the observed Br, (2) the total toroidal field
BT calculated from the observed Jr, and (3) the tangential
poloidal field BS̃ ≡ B − Bpot − BT . Part (1) is gen-
erated by the subphotospheric currents that circulate within
the solar interior without reaching the surface. Part (2) is
generated by the currents that pass through the solar surface
into the corona. Part (3) is associated with all coronal cur-
rents, regardless of whether they reach the surface or not.
It is generated by these and subphotospheric closure cur-
rents together with all our fictitious sources. The latter are
represented by magnetic shells that are set up on the ruled
surfaces, which are formed by a continuum of straight lines
connecting the center of the Sun with the points of the cor-
responding closure-current paths or of the inversion images
of the coronal-current paths. Part (3) of this decomposition
can independently be obtained from the surface divergence
of B − Bpot, which gives an advantage to express BS̃ as a
surface gradient of the spheroidal potential S̃.

Part (2) in our field decomposition is the same as in the
one recently proposed by Schuck et al. (2022). However,
their other two parts differ very much from ours: these are
the potential poloidal fields BP< and BP>, which are gen-
erated separately by subphotospheric and coronal currents,
respectively, at the upper and lower sides of the boundary.
Therefore, the sum of these fields, BP< + BP>, is always
potential too, which is in contradiction with our conclusion
that BS̃ and hence Bpot + BS̃ are generally nonpotential.
We believe that this issue arises because the fields BP< and
BP> are defined at different levels and therefore cannot be
assigned to the same surface.

Our decomposition method is free of this incosistency,
since all parts of the decomposed field are defined at the
upper side of the boundary. The effect of coronal currents
on photospheric Br is eliminated in our approach by the
compensating magnetic field. This makes it possible, on the
one hand, to relate an observed photospheric Br completely
to subphotospheric currents that circulate entirely within the
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solar interior. Therefore, the latter supports the traditional
paradigm that the potential field is the energetic ground state
of the solar corona.

On the other hand, our decomposition enables one to
see how the photospheric field of coronal currents would
look like if the solar globe were an ideal rigid conductor
that shields the interior from the magnetic field generated
by coronal currents. In other words, it incorporates, in
an idealized form, the response of the dense photospheric
and subphotospheric layers to fast variations of coronal cur-
rents, such as those occurring during solar eruptions. There-
fore, our decomposition should be useful for the analysis
of such variations. For example, it makes it possible to
derive, from a sequence of vector magnetic data, the sur-
face currents induced during eruptions and the corresponding
Lorentz forces.

We demonstrated that our field decomposition allows one
to reveal (1) the location of an MFR or, more generally, a
coronal current channel, in projection to the photospheric
surface, particularly its footprint locations, and (2) the direc-
tion of an unneutralized MFR current before modeling the
corresponding PEC. Moreover, the detection of additional
current-channel footprints and the poloidal field pattern in

the region of interest, as for the case described in Section
3.4.2, can yield further important insights about the corre-
sponding coronal magnetic fields. This provides valuable
constraints for PEC modeling, as well as important informa-
tion for the analysis of erupting and post-eruptive configura-
tions and the interpretation of the corresponding observations
taken in, e.g., EUV wavelengths. Regarding the determina-
tion of the projected location of an MFR on a given vector
magnetogram, it has yet to be seen whether the poloidal parts
of ours and Schuck et al. (2022) decomposition provide sim-
ilar results in this respect.
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APPENDIX

A. COMPENSATING MAGNETIC FIELD

To derive the compensating magnetic field, let us choose our global Cartesian system of coordinates such that its z-axis is
directed along R, which means that

R = R (0, 0, 1) (A1)

and

x = |x| (cosϕ sin θ, sinϕ sin θ, cos θ) , (A2)

where θ and ϕ are latitude and longitude, respectively, of the spherical system of coordinates whose center is the same as for the
Cartesian system.

Then, for the displacement vector

dr = −dR = − (dX ,dY,dZ) , (A3)

we have the following negative radial component of the elementary BSL field:

−x̂ · dBI

∣∣
|x|=1

= − x̂ · r × dr

r3

∣∣∣∣
|x|=1

= −R sin θ (sinϕdX − cosϕdY)

r31
, (A4)

where

r1 =
√
1− 2R cos θ +R2 . (A5)

A.1. Subphotospheric Path C∗

We are looking for the compensating potential magnetic field such that

dBC∗ = −∇x (dFC∗) , (A6)
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where the potential dFC∗ is a regular harmonic function at |x| > 1 that satisfy the Laplace equation,

∇2
x (dFC∗) = 0 , (A7)

and the following boundary condition:

− ∂

∂|x|
dFC∗

∣∣∣∣
|x|=1

= −x̂ · dBI

∣∣
|x|=1

. (A8)

Thus, we obtain for dFC∗ the external Neumann problem with the spherical boundary |x| = 1. Instead of applying a standard
method for solving this problem, let us use a more heuristic approach that exploits a relatively simple form of the boundary
condition defined by Eqs. (A4) and (A8).

Note first that this condition suggests that the following relationship

∂

∂|x|
dFC∗ =

R sin θ (sinϕ dX − cosϕ dY)

r3
, (A9)

r=
√

|x|2 − 2 |x|R cos θ +R2 = |x−R| , (A10)

possibly holds for |x| other than |x| = 1 as well. To verify this strong assumption, let us integrate Eq. (A9) over |x| to obtain

dFC∗ =
R cos θ − |x|
rR sin θ

(cosϕdY − sinϕdX ) + δ(θ, ϕ) , (A11)

where δ(θ, ϕ) is generally an arbitrary function, which can also depends on dR and R as on parameters. One can prove by
direct substitution that the first term of Eq. (A11) is a solution of (A7). However, this heuristic solution of serendipity is singular
at sin θ = 0, which corresponds to a non-local singularity extended throughout the whole space. The latter property is not
acceptable for us, because our solution must be regular at |x| > 1.

Fortunately, this issue can be resolved by using in Eq. (A11) the second term δ(θ, ϕ), which then also is to be a not regular
harmonic function whose singularity, however, should eliminate the singularity of the first term in the domain of interest, namely,
at |x| > 1. The desired solution δ(θ, ϕ) of the Laplace equation is easily found, as it does not depend on |x|. The result reads as
follows

δ(θ, ϕ) =
1

R sin θ
(cosϕ dY − sinϕdX ) , (A12)

so that Eq. (A11) after some algebraic calculations becomes

dFC∗ =
R sin θ (cosϕ dY − sinϕ dX )

r (|x| − R cos θ + r)
. (A13)

The obtained potential dFC∗ tends to infinity if the denominator in Eq. (A13) vanishes. This occurs at θ = 0 and 0 ≤ |x| ≤ R
when |x| − R + r = 0. However, the resulting singularity is acceptable for R < 1, since it is located within the photospheric
surface |x| = 1, and therefore our solution is regular in the corona |x| > 1, as required.

Since we are going to use our Eq. (A13) for an arbitrary element of the current path, it is useful to rewrite it in the vector form
as follows: [

µI

4π

]
dFC∗ =

r × x · dr
r (x · r + |x| r)

. (A14)

Then, by using this expression one obtains from Eq. (A6) the required compensating field dBC∗ that is presented above by Eq.
(6).

To understand the physical meaning of Eq. (A14), let us substitute the relationships x = R + r and dr = −dR into it to
obtain [

µI

4π

]
dFC∗ =

dR×R · r
r2 (r +R · r̂ + |r +R|)

. (A15)

In this source-centric form, the asymptotic behavior of dFC∗ becomes obvious: the leading term of its expansion by r ≫ R is

dFC∗ ∼ dR×R · r
2 r3

, (A16)
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which is nothing else as the potential of the magnetic moment 1
2dR × R normalized to µIR2

⊙
/
4π. Further analysis of the

behavior of Eq. (A15) near the singularity mentioned above suggests that this moment is linearly distributed along the vector R
from 0 to dR×R. For verification of this assumption, it is convenient to use the Cartesian system of coordinates whose origin
is located at the point R and the x-, y- and z-axes are parallel to R, (dR×R)×R, and dR×R, respectively. The linear
superposition of the potentials generated by the linear distribution of the magnetic moment is given in these coordinates by the
following integral:

|dR×R|z
R2

∫ 0

−R

(ξ +R) dξ

(ξ2 − 2xξ + r2)
3/2

=
|dR×R| z

r
(
r2 +Rx+ r

√
r2 + 2Rx+R2

) , (A17)

where

r =
√
x2 + y2 + z2 . (A18)

Rewriting now the result of this integration in terms of vectors, we arrive at the expression given by Eq. (A15) and therefore
validate our guess about its origin.

However, the derived solution admits another, more instructive, and deeper interpretation than the present. Note, first, that the
considered magnetic singularity refers strictly speaking not to the vector R itself, but rather to the infinitesimal triangle spanned
by the vectors R and dR as shown in Figure 1. One can imagine that the area of this triangle is swept out by the radius vector
R as a result of an infinitesimal displacement dR of its head along the path C∗. The swept area equals 1

2 |dR×R|, which is
exactly the dimensionless strength of the magnetic moment that we found above to be linearly distributed along R or, in view of
the latter remark, over the infinitesimal triangle.

To relate the line and surface densities of the magnetic moment, let us consider similar triangles obtained from the indicated
one via its homothety with respect to the solar center O. With the homothetic coefficient k running from 1 to 0, the area of these
triangles and its increment scale as k2 and 2 k, respectively. This implies that the linear distribution of the line density of the
magnetic moment along R is actually due to a uniform distribution of the magnetic moment over our triangle spanned by the
vectors R and dR. Normalized to µI/4π, the corresponding surface density of the magnetic moment in this triangle is equal to
just unity.

In other words, our infinitesimal triangle is magnetically polarized and is known in textbooks as a magnetized or magnetic shell
(see, e.g, Stratton 1941). Therefore, up to a coefficient proportional to the electric current associated with the magnetic shell,
its magnetic potential must be equal to the solid angle from the observation point subtended by this triangle. From the above
consideration of the homothety in the triangle, it follows that the indicated solid angle is

dΩ = (dR×R · x)
∫ 1

0

k dk

|x− kR|3
. (A19)

The integral here can be taken exactly and transformed into the expression given by Eq. (A15), which straightforwardly confirms
our physical interpretation of the potential dFC∗

The integration of dFC∗ itself or the corresponding dBC∗ , given by Eq. (6), along the path C∗ provides the total potential FC∗

or the compensating field BC∗ , respectively. Thus, they are generated by the magnetic shell that geometrically is a ruled surface
S∗ swept out by the vector R when its head slides from the foot point R2 to R1 along the path C∗, i.e. the directrix of S∗ (see
Figure 2). The resulting surface S∗ is a curvilinear triangle with two straight sides and one curved represented by the vectors R2

and R1, and the path C∗, respectively.
As shown above, the surface density of the magnetic moment is a unit vector field, say m̂, normal to our infinitesimal triangles,

and so to S∗ itself. According to the characteristic property of magnetic shells (Stratton 1941), infinitesimal currents, circulating
within S∗ to create the field m̂, compensate one another throughout S∗ except for its edges or sides. Currents flowing along the
edges and the original circuit C ∪ C∗ have the same values and directions of circulation. As a result of that, they are counter-
directed at the path C∗ and cancel each other. Thus, only the magnetic-shell currents flowing along the straight sides of S∗ are
responsible for generating the field BIC∗ represented by Eqs. (14) and (15), while the contribution to this field by the closure
current flowing along the path C∗ is fully compensated.

The latter provides, first, an elegant physics-based proof of the fact that the field BIC∗ does not depend on the shape of the
path C∗ (see Section 2.2). Second, it provides an alternative and more transparent way to explicitly determine BIC∗ : it can now
be easily obtained by a simple integration of the elementary BSL field, given by Eq. (1), along the straight sides of S∗. Finally,
establishing the relation between BIC∗ and the magnetic shell, we gain a deep insight into the nature of the toroidal magnetic
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field. Indeed, Eqs. (16)–(19) reveal that BIC∗ is a toroidal field whose current density is the potential field generated by two point
sources of opposite signs. We now see that these sources are located at the upper end points of the straight sides of S∗, which are
also the foot points R1 and R2, as shown before. This coronal current, therefore, provides closure to the edge currents on the
straight sides of the magnetic shell S∗.

A.2. Coronal Path C
The compensating field dBC and its harmonic potential dFC for the coronal path C is determined similarly to that for the path

C∗, except for the following point. The singularity of dFC cannot be distributed over the entire vector R, since R ≥ 1 and so
this singularity would extend into the corona making the corresponding dFC unacceptable. Instead, it is natural in this case to try
and use for carrying the singularity the vector R∗, which is the image of R due to its inversion given by Eq. (3). By definition,
its length R∗ = 1/R ≤ 1 and hence the singularity would be fully contained within the sphere |x| = 1, as required.

Based on this consideration, we substitute R∗ for R in Eq. (A13) and, for the reason explained below, multiply it additionally
on R∗ to obtain

dFC =
R2

∗ sin θ (cosϕdY − sinϕ dX )

r∗ (|x| − R∗ cos θ + r∗)
, (A20)

where

r∗ =
√

|x|2 − 2 |x|R∗ cos θ +R2
∗ = |x−R∗| . (A21)

In vector form, similar to Eq. (A14), this expression is written as follows[
µI

4π

]
dFC =

1

R
r∗ × x · dr

r∗ (x · r∗ + |x| r∗)
, (A22)

which after using the relationship

dBC = −∇x (dFC) (A23)

and some vector algebra yields Eq. (7). As stated in Eq. (11), the obtained dBC compensates for the photospheric radial field
of the corresponding current element of the path C. Namely for this purpose, we used above, first, the vector R∗ as a carrier for
the singularity and, second, the additional multiplier R∗ when deriving Eq. (A20). Both these steps are needed to have Eq. (11)
exactly fulfilled.

To understand the physical meaning of Eq. (A22), let us transform it to a source-centric form, similar to the one that Eq. (A15)
provides for the path C∗. However, the above consideration implies that it is impossible to use the path C as a location for the
sources of the compensating potential field. Instead, it suggests that this role belongs to another path, which is denoted by C∗∗

and obtained from C as a result of the inversion mapping whose point-wise definition is provided by Eq. (3). Indeed, noticing
that x = r∗ +R∗, dr = −dR, and

dR∗ =
dR
R2

− 2 (R · dR)
R
R4

, (A24)

we derive from Eq. (A22) the desired source-centric expression.[
µI

4π

]
dFC =

R−1
∗ dR∗ ×R∗ · r∗

r2∗ (r∗ +R∗ · r̂∗ + |r∗ +R∗|)
. (A25)

The derived expression is similar to Eq. (A15), except for the following two differences: first, it refers to the sources associated
with the path C∗∗ rather than C∗, and second, it has an additional coefficient R−1

∗ ≡ R, which we call henceforth the modulation
factor. Except for this coefficient, the entrance of r∗ and R∗ into Eq. (A25) is the same as that of r and R in Eq. (A15).
Therefore, the infinitesimal triangles that abut the path C∗∗ play a similar role: they are elementary magnetic shells whose
magnetic-moment surface density m is perpendicular to the triangle planes. However, its modulus, |m| = R−1

∗ , is constant only
along the vectors R∗, but generally changes between them. Thus, the total magnetic potential FC is generated by the magnetic
shell whose ruled surface S∗∗ is swept out by the vector R∗ as its head moves along the path C∗∗ from the foot point R∗1 = R1

to R∗2 = R2 (see Figure 2(a)).
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The indicated variability of m makes it possible to locally enhance the edge line current flowing at a given element dR∗ of the
path C∗∗ to a level sufficient to compensate for the boundary radial component of the coronal BSL field dBI . For constant m,
which implies a constant edge current, this compensation would only be partial, as we demonstrated previously in Section 2.2 by
deriving Eq. (4).

Note also that the variation of the edge line current along the path C∗∗ does not contradict the conservation law of the electric
charge. This variation is sustained by surface currents, which circulate in the magnetic shell S∗∗ by flowing in or out of its edge,
the path C∗∗. In this way, the surface currents refill or drain the edge line current depending on whether the modulation factor,
R−1

∗ , increases or decreases, respectively, along C∗∗ (see Figure 2(b)).

A.3. Entire Path C ∪ C∗

Let us consider how our interpretation of compensating magnetic fields in terms of magnetic shells can help simplify the MBSL

defined by Eqs. (21), (14), (7), and (1). Panels (b) and (c) in Figure 2 suggest that such a simplification is possible, because the
line currents at the straight edges of S∗ and S∗∗ flow in opposite directions and reduce or even cancel each other. For the latter
to be valid, the currents must be equal in strength, which is exactly what occurs in our case. As the modulation factor equals
R−1

∗ = 1 at the straight edges of S∗∗, the local elementary magnetic shells, that is, the infinitesimal triangles adjacent to these
edges, have the same magnetization for both the S∗∗ and the S∗ shells, and so the strengths of their edge line currents are the
same. This implies that a part of the first term and the entire second term in Eq. (21) cancel each other.

To perform this simplification, notice first, once again, that the field defined by MBSL is independent of the shape of the path
C∗. Therefore, we are free to choose this path to be identical to the curve C∗∗ and thereby to have the first shell defined on the
same ruled surface S∗∗. Due to the linearity of the problem, we can now merge these magnetic shells into one by assigning
m̂+m to its surface density field of the magnetic moment. This essentially means that the resulting elementary magnetic field
produced by each of the new infinitesimal magnetized triangles simply equals

(
1−R−1

)
dBC∗ , where R refers to points of

the path C∗ ≡ C∗∗. The modulation factor here is an algebraic sum of the previous two factors, 1 and −R−1, corresponding
to the merging shells S∗ and S∗∗, respectively. The second factor is negative, because the direction of m is opposite to m̂.
Summarizing this consideration, we finally arrive at the reduced form of MBSL given by Eq. (23).
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